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ABSTRACT

A generic architecture for neural net multisensor data fusion is introduced and
analyzed. The architecture consists of a set of independent sensor neural nets, one
for each sensor, coupled to a fusion net. Each sensor is trained (from a represen-

tative data set of the particular sensor) to map to a hypothesis space output. The
decision outputs from the sensor nets are used to train the fusion net to an overall
decision. In this report the sensor fusion architecture is applied to the stochastic
exclusive-or problem for a benchmark comparison with classical hypothesis testing.

The architecture is also applied to a data fusion experiment involving the multi-
sensor observation of object deployments during the recent Firefly launches. The
deployments were measured simultaneously by X- and L-band and CO 2 laser radars.
The range-Doppler images from the X-band 1nd CO2 laser radars were combined
with a passive-IR spectral simulation of the deployment to form the data inputs
to the neural sensor fusion system. The network was trained to distinguish pre-
deployment, deployment, and postdeployment phases of the lai ni based on the
fusion of ti "se sensors. The success of the system in utilizing scnsor synergism for
an enhanced deployment detection is clearly demonstrated.
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1. INTRODUCTION

A highly successful intuitive architecture for hypothesis testing from fused multisensor data
consists of distributed single-sensor processors coupled to a fusion processor for an overall decision.
Each single-sensor processor outputs a decision based only on the individual sensor data, which
forms the input to the fusion processor. Optimal signal processing in a distributed sensor envi-
ronment based on statistical estimation and hypothesis testing techniques has been considered in
Tenney and Sandell [1], Sadjadi [2], Chair and Varshney [3], Thomopoulis et a]. [4], Atteson et al.
[5], Reibman and Nolte [6], and Dasarathy [7]. As with any Bayesian approach to hypothesis test-
ing, optimum tests for data fusion are a function of the probability distributions of the input data.
The design of such tests often involve an assumed model for the observed phenomena to define the
data distributions. Alternatively, data-adaptive hypothesis testing results in a test based only on a
previously generated training data set [8]. The outcome of a data-adaptive test is estimated from
the system performance on a performance set of generated data with known hypotheses. The aver-
aged system performance is simply obtained by applying the testing to an ensemble of training and
performance sets. A theoretical treatment of data-adaptive hypothesis testing, with performance
estimates based on the statistics of the training set, is given in Levine and Khuon [9]. It should be
emphasized that data-adaptive hypothesis testing, while avoiding an assumed model for the data,
requires a representative training set for successful definition of the test.

This report applies a particular data-adaptive hypothesis test, the neural net, to the dis-
tributed sensor fusion architecture. Relative to the now-conventional neural net taxonomy [8,101,
only mapping neural networks such as the inultilayer perceptron [11] and back propagation [12-16]
are considered. These nets differ florw tie association Hopfield-type [17,181 by applying supei-
vised learning (adaption) toward the perlormance of a functional mapping without feedback [8].
In hypothesis testing the desired map is from the input da.ta space to an output hypothesis space.
Alternative neural net architectures, such as those employing Kohonen learning [8,19], attempt to
store data distributions internally rather than directly performing the data input-hypothesis space
output mapping. It has generally been found that neural net classifiers perform as well as con-
ventional techniques on a variety of problems, including linear, Gaussian, and k-nearest neighbor
algorithms [1C,20-241. More generally, neural nets have been configured to perform the maximum
a posteriori probability [25] and maximum likelihood tests [26] for arbitrary input distributions.

Figure 1 is a generic architecture for distributed multisensor neural net data fusion consisting
of a sensor neural net (SNN) for each detector simultaneously observing a stochastic phenomena.
Each SNN is trained to the outpat decision. space H1 , ... ,HQ1 from a training set cor•sisting of

the corresponding sensor data. The output of the SNN consists of a normalized vector (al,. . . , aQ)
where the largest ai determines the hypothesis H1 . After all SNNs are trained, an independent data
set is propagated through the SNNs to form an input training set for the fusion neural net (FNN).
The FNN input consists of an analog Q x M vector, corresponding to Q decisions for each of M
sensors. The FNN output consists of the vector (fj,..., f), such that the largest fi implies an
overall system decision for hypothesis Hi. Note that the FNN performs cluster analysis in the QM

J1
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Figure 1. Genetic neural net sensor fasion architecture for distributed sensor processing.

dimensional input space. which for hypothesis Hi is clustered to the vector (0,..., 0, 1 ,0,..., 0)
for each of Al sensors.

To motivate the neural net sensor fusion architecture in Figure 1, the system is applied to a

problem for which a classical test is formulated. Section 2 discusses the neural net detection of a
transition in the standard deviation of Gaussian noise. The process standard deviations before and
after the supposed transition are assumed to be sensor dependent. The input to the SNNs consist of
windowed sample variances from before and after the (supposed) transition. The mapping is from a

X2 distributed pair (,y, X-.) to a decision space output (1,0) for transition and (0,1) for no transition.
Figure 2 is a schematic of the transition test mapping, which is •W'ote I SXOR (for stochastic
exclus;ve-or). It is easdy shown that. the test requires a classifier bilinear imi X1 and X2, W'hich is
implemented by a second order neural fl1Ž, sdgorithm [11]. In addition to requiring a nontrivial

neural net, the variance transition problem is sufficiently tractaHie to allow an analytic solution for
the classical test performance. Fal.•e alarm and detection probabilities are expressed in terms of the
threshold parameter used in the hypothesis test. An optimum threshold, corfrrsponding roughly
by definition to maximum detection and locatly minimum false alarm probabilitiesi, is computed

2
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Figure 2. Schematic of variance transition test mapping: stochastic exclusive-or
(SXOR). Input N-sample window variances (x1,k2).

for a number of lifferent noise and sampling conditions. Section 2 compares the performance of
the sensor and fusion neural nets to the classical test probabilities. Chair and Varshney [3] show
that optimum data fusion is implemented by a linear combination of the SNN decision outputs

followed by the application of a threshold. The optimum weight vector for the linear combination
is a function of the perfomance probabilities of the SNNs. This fusion algorithm is equivalent to
a first-order perceptron for which the weight vector can be adapted by the perceptron learning
algorithm [5,11]. The performance of the neural net sensor fusion system on the SXOR problem
with back propagation SNNs and the optimum perceptron FNN are also discussed in Section 2.
Motivated by the fact that the optimum fusion algorithm is a neural net, a back propagation FNN
"was trained on the SNN outputs. Both the optimum and back propagation FNNs matched or
exceeded the higher performing SNN in the data fusion, justifying the use of neural networks in
tho distributed sensor fusion system.

Section 3 applies th.. fusion• system architecture shown in Figure I to the detection of object
deployments during the Firefly (FF) launches that occurred on 29 March (FF1) and 20 October

1990 (FF11) from Wallops Island, Virginia (as depicted in Figure 3). The launches presented
a rarc opportunity for data fusion due to the simultaneous observation by the three Millstone
Hill (Westford, Massachusetts) radars: the Haystack X-band imaging, Firepond CO2 laser, and

3
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Figure 3. Firefly experiment launch sequence: Phases I (predeployrnent), I1 (deploy-
ment), and III (postdeployment) for canister-payload and balloon-canister.

Millstone L-band tracking. In applying the sensor fusion architecture to the FF data, two back
propagation SNNs were trained on the deployments using range-Doppler images derived from the
Haystack X-band and Firepond CO 2 laser radar data. A third SNN had as input the passive-IR
spectral simulation of the deployments consisting of the spectral irradiance of the objects in the
range [5 It, 25 u]. The range-Doppler images contained information of object segmentation, whereas
the passive-IR simulation was sensitive to changes in the exposed object material composition. The
sensor fusion system neural output consisted of a decision among the possibilities of predeployment
(1,0,0), deployment (0,1,0), and postdeployinent (0,0.1). In accordance with Figure 1, the FNN
had nine inputs, three sensors with three possible decisions, and three output neurons for an overall
deployment decision. The system is applied to deployment detection of an inflated balloon with
training and performance data sets from the same launch (FFI). The performance of the entire
sensor fusion system is compared to that of the SNN for each sensor to observe evidence of sensor
synergism through data fusion. The application of the system to a canister deployment detection,
in which the training and performance sets were taken from different launches (FF1 and FFII,
respectively), is also discussed.

Sections 2 and 3 contain the systematic theoretical and experimental analyses of neural net
processing in the increasingly relevant distributed sensor environment. A conclusion follows in
Section 4, and the appendix contains the Bayesiarn analysis of the SXOR test.

4



2. SXOR BENCHMARK FOR NEURAL NET DATA FUSION

This section considers a quantitative comparison of neural net and classical hypothesis testing
in the distributed sensor architecture. The SXOR test map is interesting because it requires a
nontrivial neural net implementing at least a second-order classifier and yet is mathematically
tractable. In addition, the detection of noise deviation transitions reflects a co" nion situation in

nonstationary signal processing (27].

2.1 False Alarm and Detection Probability for SXOR

False alarm and detection probabilities are related to the threshold parameter of the SXOR
test and the properties of the noise sampling. The sufficient statistic for a zero mean Gaussian

process {yiti = 1,... ,N} is the sample variance [28]

1N

- k - (Yi 9)2, (1)

where 9 is the mean. The sample variance is X2 distributed with a probaoility density

- p -(2)
2 a-.r(L-)

where a is the standard deviation of the Gaussian random process {Yi}, and F '.s the gamma
function. The classic test of distinguishing between two deviations, ao and al, results from a
threshold -y; X greater(less) than 'y implies noise deviation 1(j0o).

The computation of performance probabilities for the SXOR requires the conditional probabil-

ities {p[(i,j)l(q, m)]Ji, j, q, rnm{O, 1}} where each pair (i, j) corresponds to a (before,after) variance
condition. The index i of 0 or 1 denotes a windowed sample variance from a low (Co0) or high (0l)
deviation process, respectively. The conditional probability p[(i, j)I(q, m)] represents the detection
oi a noise condition (i, j) when the (before,after) windows truly correspond to the condition (q, m).
The hypothesis is tested oil two data windows of length N from before and after the supposed vari-
ance transition. Assuming independent tests on each window, the conditional probabilities -fact--

according to the equation p[(ij)j(q, m)] = p(ilq)p(jjm), where p(jlm) denotes the probability of
choosing noise deviation uj for a single window with deviation cr. The pair of decisions necessary
to determine a transition is based on the value of X in Equation (1) 'or two data windows and the

threshold -y (as described above).

5



The appendix relates the false alarm and detection probabilities for variance transition de-

tection to the conditional probabilities on a single window p(jim). The conditional probabilities

for the transition hypothesis test are shown to be given by

Pd = p(transitionltransition) = p('11 )p(0 10) + p(011)p(l10) (3)

and

Pf = p(transitionlncs transition) = p(ll)p(Ojl) + p(1]0)p(010), (4)

where it is assumed that the four possible noise conditions {(ij)jijc{O, 1}} have equal prior

probability. The conditional probabilities appearing in Equations (3) and (4) are given by

p(l0i) JPt(:) dx (5)

and

p(01i) = pi(x) dx, (6)

where pi is the function p(x) in Equation (1) with a equal to ai.

As the threshold is varied, the behavior of Pd and P1 in Equations (3) and (4) characterizes

the hypothesis test [28], which for this problem is the determination of a high/low or low/high
variance transition. The test is a stochastic version of the binary exclusive-or map, which has

historically been important in neural net research [11,12]. The central importance of this map

deriw.a_ from the concept of linear separability [111. Embedding the input sample variances (X1, X2)

to a higher dimensional space (X1, "2, X1X2) euihances the linear separability of the X2 distributed

input data distributions. This fact suggests that the transition detection classifier is bilinear in the

input pair (XI, X2) and, therefore, that the perceptron realizatiLun of the map is necessarily second

order [11j. It is emphasized that intermediate single-window variance decisions, high cr low, are

not performed in the test so that the map is different from the conventional Gaussian classifier.

Figures 4 and 5 plot false alarm and detection probability as a function of threshold -y for a0

of one and al of two and four, respectively. The conditional probabilities were derived for various
* window lengths N by numerical computation of Equations (3) through (6). Note that for deviation

a1 and/c, window of sufficient size N, the p -tak of the detection probability occurred near the local
minimum in the false alarm probability. The experimental results for neural net performance on

the SXOR problem indicate convergence to this region of peak detection and locally riinimrnum false
alarm probability.

6
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Figure 4. False alarm and detection probability versus threshold -y for SXOR test, with
1,o a, •- 2, and N = (a) 2, (b) 6, (c) 10, and (d) 20.

2.2 Back Propagation Neural Net Performance

Figure 6 is a back propagation neural net suitable for hypothesis testing on an input P-vector
of data-derived parameters. The desired output for an input vector corresponding to hypothesis

Hi, i = 1,... ,Q is the vector (0,... , 0, 1 , 0.... ,0) as obtained from the Q output (deepest layer)
neurons. In addition to the input and output neuron layers, the back propagation net contains
so-called "hidden" layers. The adjustable parameters on the net consist of a threshold for every
neuron in the net and connection weights between neurons oD adjacent layers [12]. During forward
propagation (left to right) a neuron with threshold 0 applies the sigmoid function

f 1 (7)

I + exp(-I + 9)

7
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Figure 5. False alarm and detection probability versus threshold -^/for SXOR test, with
oro = 1, cl = 4, and N = (a) 2, (b) 6, (c) 10, and (d) "20.

to the input I consisting of the weighted sum of the neuron outputs from the leftward adjacent
layer. Net adaption consists of varying the connection weights and thresholds until the output of
the deepest layer neurons matches the desired output for all elements of the training set. Details
of the back propagation algorithm, which is 6erived from the gradient descent minimization of the
difference between net output and target over the training set, is found in Rumelhart et al. [121.

It has been shown that a t, ree-tayer back propagation net is sufficient to implement any
reasonable functional mapping between input and output vectors [291. Note from Equation (7) that
an undulation of the mapping is reali~able by the equation (f (1) - f(I+ A)) for a constant threshold
A. This roughly suggests that two middle layer neurons are required for each oscillation in the map;
however, performance at a Bayesian optimum is not guaranteed by a network that performs an exact
mapping for every element in a stochastic training set (9]. To test the performance of the back
propagation algorithnm on the SXOR mnap, a Yiet with 2 input neurons, 16 middle layer neurons,
and 2 output neurons (Q = 2) was used. The training rate and smoothing parameters (-q and a

-: :.. . . . I. . • • I II. .
*. .. . I .

*- I :- --



NEURON THRESHOLDS
CNC/CONNECTION

CONNECTION

WEIGHTS

NERO THRESHOLD

Figure 6. Back propagation neural net for hypothesis testing: P-t'ector input data and
Q-:iJector hypothes•.s output, (0, . .0. . 1, 0.0.. ) '- H1.

* ~ in Rlumelhart [12]) were chosen to be 0.6 and 0.2 by experimentation with various input sets. The

input consisted of sample variances from a training set of Gaussian random noise segments with a'0
of one and o'l of either two or four. The sample variances were computed from windows of length
N given by 2, 4, 6, 8, 10, and 15. For each noise paic (ar0 and al) and window N, two training
ensenmbles each of sizes 400, 800, and 1200 were created with deviation pairs in the order (1,1),
(1,0), (0,0), and (0,1). The two third-layer neurons were trained to output values 1 and 0 for the
(1,1) and (0,0) inputs, and the output targets were reversed for input corresponding to (1,0) and
(0,1). The cost function C, consisting of the summed differences of third-layer outputs and targets,
was monitored during train iqg to determine a point beyond which it did not decrease. Figure 7 is
a typical cost versus iteration curve for a 100-element training set with al of 4 and window length
N of 10. Also included is the so-called "H-amming error" versus iteration plot, which is defined asL the,, number of decision errors (wit;hin• 1._..%) over.. the,........ training set. As suggested •,n H-prht.-Nie~l.nn [8],-
nets paraetersie foralrg number (> 30, 000) of iterations (defined as a single adaption of all

netparmetrs orevery element in the training set) and the point of minimum cost was chosen
as the optimunm. The implementation of the desired training set map, corresponding to C -* 0,
was often not attained with 16 middle layer neurons; however, the Bayesian optimum wa~s obtained
through the net learning of data biases rat;her than each undulation in the training set map [9].
P aetwork wit], too many hridden layer neurnns often had plateaus in the cost function in Figure

i9
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Figure 7. Cost versus iteration curve for back propagation learning of the SXOR map: 2
input, 16 hidden layer, and 2 output neurons in a 1MO-element training set; oo = 1, ol = 4,
N=10.

7, which was probably due to the phenomenon of "neuron paralysis" [29] that occurs at a neuron

when the input is at the tail of the threshold function in Equation (7). In this case, connection

and threshold parameter adaption have little effect on the neuron output, hence the cost function

remains constant [30].1 It was found that, whereas extremely long training sometimes resulted

in downward jumps in the cost function, the network performance on the test was not improved.

Often the only effect was an increase in detection probability with a simultaneous increase in false

alarm probability and vice versa. A discussion of techniques to avoid neuron paralysis and other

neural computational ,-,.,-l- is provided in Wasermnan [31].

'On the exclusive.or map a 64-neuron hidden layer had 4% paralyzed runs and a 128-neuron hidden

layer had 78% paralyzed runs.

10



For each parameter set or0 , a, and window length N, networks trained on ensembles of length
400, 800, and 1200 were performance tested. A performance set with 1200 variance pairs was in-
put to the trained net, and for each pair the largest neuron output determined whether transition
or no transition was chosen. The proportion of correctly and incorrectly chosen transitions then
determined the detection Pd and false alarm P1 probabilities for the test. The performance prob-
abilities for nets trained on three different sets (of length 400, 800, and 1200) were averaged. The
combination of training sets of different size minimized the dependence of the network performance
estimate on training set. size. Figures 8 and 9 plot P1 and P1 versus N as estimated from the
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Figure 8. SXOR false alarm and detection probability versus window size N for back
propagation NN and classical test: ao = 1, a, 2.
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performance sets for ol of two and four, respectively; the dotted curves correspond to the classical
optimum defined in Section 2.1. As seen in Figures 8 and 9, the back propagation network closely
approximated the performance at the peak Pd and locally minimum P1 in Figures 4 and 5. This
behavior is understood by the equal contribution of H0 and H 1 errors over the training set in the

cost function C [12].

2.3 SXOR Data Fusion

Section 2.2 demonstrated the optimum performance of a back propagation neural net on the
SXOR test, which requires a bilinear classification of the input sample variances. This network
corresponds to a forward-based SNN in the distributed sensor fusion architecture in Figure 1.
A description of FNN training and performance by taking input from two SXOR-trained SNNs
follows. The results indicate the enhancement of variance transition performances obtained through
distributed sensor data fusion.

In Chair and Varshney [3], an optimum data fusion rule for a binary decision was obtained
within the distributed sensor processing architecture. As derived from the log-likelihood ratio test,
assuming sensor processor i, i = 1,.. . , M, outputs ui of -1 or +1 for decision Ho or H 1 , the data

fusion rule is [3]

f +1 ifao+EMaiui >0 (8)
-1 otherwise,

where the coefficients ai, i = 1,..Al, are given by

1 [(l-P~m)(1-P!,)

S1 log L PMJ f ) (9)

and

a= log + 1 log P,(I- Pi,) (10)

with Po and P1 the prior probabilities of H0 and H 1 , and Pm and Pf, the miss and false alarm
probabilities of the ith sensor processor. The architecture implied by Equations (8) through (10) is,
in fact, a first-order perceptron [5,11] that can be realized through the adaption of the connection
weights ai, i 0, .... , M, by training. To implement perceptron learning for input ui = ±1, i
1,..., M, define the normalized predicate vector (P = (1, ul,... , uM)/VM + I and connection
weight (M + 1)-vector A = (ao,..., am). After a training set element input vector is propagated
through each SNN, and the SNN decisions are determined by the largest neuron outputs, the dot
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product 41. A is computed. In the case of a correct FNN decision, . A > 0 (< 0) for ( corresponding
to HI (Ho), the connection weight vector is not changed (A' = A). For an incorrect FNN decision
the connection weight vector is altered by the normalized predicate vector, A' = A=± 4, where +(-)
corresponds to -. A < 0 (> 0),for 4 corresponding to H, (Ho). An iteration of the perceptron
adaption algorithm consists of the application of the above algorithm for every element in the
training set [11]. Training- continues until the FNN performs a correct decision for the entire set or
until the FNN performance does not improve.

The architecture for the fusion of two SXOR-trained back propagation SNNs is shown in
Figure 10. It is assumed that the high noise deviation al is sensor-dependent, so that each SNN

NO TRANSITION

DEC RASI ISION RASTO

,,, ~~PROPAGATO~N >Ti'-

AT1TRNSIIO

x: a2oo = 1 .0 o "1 2 .0• N o T " " "S T O

NO TRANSITION

DECISION: + TRANSITION

LARGEST FIRST

"NEURON OUTPUT PERCEPTRO

, 4 SNNX '× 2 • o 1.0 4 .0
I / NO TRANSITION

, DECISION;
LARGEST

NEURON OUTPUT

Figure 10. Fusion architecture for SXOR test: SNN1 (Sor-- 1, az 2), SNN?2 (Oro=
1, a, = 4), and PIVN first-order perceptron.

was previously trained on a different variance pair or0 (= 1) and at. For each window size N
(= 2, 4, 6, 8, 10) a pair of SNNs was trained on sample variances with al of two and four.
As in the experiment described in Section 2.2, the SNN target outputs were (1,0) and (0,1) for
transition and no transition, respectively. A performance set of 1000 variance pairs each was
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used to compute the SNN detection Pd, false alarm Pf, miss Pm, and correct no transition PcH0

probabilities for the test. The SNN decisions were determined by the largest neuron output. A
plot of these performance probabilities for the (a, = 4) SNN and (cl =-- 2) SNN as a function
of window size N is shown in Figure 11. A determination of the SNN detection and false alarm

1791.53-10

al = 4.0 SNN --------
a1 =2.0 SNN .........
OPTIMUM FNN

BPFNN

S, ...........
....... .....................

-- L--L R- ~

0 III I t I

'I
41......... ... .. ...........

2 3 4 5 6 7 8 9 10H N
Figure 11. Performance probabilities for the fusion of two SXOR-trained SNNs: Pd, Pf,
P,,, and PcHo versus window size N for ol = 2 and a, = 4 SNNs, optimum FNN, and
back propagation FNN.

probabilities aliowed the definition of an optimum perceptron FNN from Equations (8) through
(10). An estimate of the perceptron FNN performance was obtained with 1000 variance quartets
((i,j), (i',j')), i,j,i',j' {0, 1}. Quartet ((i,j), (i',j')) corresponds to input variance pairs (i,j) and

(i',j') for the SNNs with a, of two and four, respectively. Recall that i of 1(0) corresponds to
the choice of a high(low) noise deviation in the definition of the sampled variance. The output

15



SNN decision was converted to ui = ±1, i = 1, 2 (as in Figure 10) before input to the perceptron
FNN. Figure 11 shows the perceptron FNN performance as a function of N as determined from
the performance set. Note that the FNN matched the performance of the (al = 4) SNN for N of
2, 4, 6, 8, and 10. The (or =: 2) SNN has a small effect on the optimum FNN due to the generally
poor performance of the net (Pmo = P1 2" 0.5).

Motivated by the representation of i he optimum FNN as a perceptron, a back propagation
FNN (BPFNN) was defined for the data fusion of the two SXOR-trained SNNs. The BPFNN con-
sisted of 4 inputs (2 from each SNN), a 16-neuron hidden layer, and 2 output neurons. The BPFNN
was trained on 25 randomly generated variance quartets in the order ((0,0),(0',0')), ((1,0),(1',01)),
((1,1),(1',1')), and ((0,1),(0',1')). Each variance quartet was propagated through the SNNs and
normalized to define the 4-element input to the BPFNN. As in the case of the SNNs, the BPFNN
targets were (1,0) and (0,1) for transition and no transition, respectively. To speed up training for
an FNN with only 16 hidden neurons, the variance quartets from the overlapped region of the input
domain were removed from the training set. This procedure usually suffices to obtain Bayesian op-
timum performance through the learning of data biases [9]. After BPFNN training, a performance
set of 1000 random variance quartets was generated and propagated through the entire sensor
fusion system. A count of correctly and incorrectly detected transitions and no transitions over
the performance set determined the conditional probabilities plotted in Figure 11. Note that the
trained BPFNN essentially matched the optimum FNN at the performance of the (o, = 4) SNN for

window sizes 2 through 10. These results suggest that the trained distributed sensor fusion system
attained at least the performance of the strongest sensor at any time. To demonstrate performance
enhancement through data fusion, the fusion of two (al = 4) SNNs trained on data of window
length 2 was considered. A three-layer BPFNN was trained on the SNN pair outputs from 100
input variance quartets. As in the training above, variance quartets frorm the overlapped regions of
the input domain were discarded from the training set. This procedure required a BPFNN training
time of about 30 min on the Silicon Graphics Workstation. The BPFNN performance probabilities
were computed from 100 independent performance sets, each consisting of 100 variance quartets.
Averaged BPFNN performance probabilities (Pd, Pf, Pm, Po11,) given by (0.84, 0.11, 0.16, 0.87)
were obtained for comparison with the (or = 4) SNN performance set (0.7F 0.38, 0.24, 0.62). In
applying the same training and performance procedure to two fused (ol = 4) SNNs with window
length 4, BPFNN averaged probabilities given by (0.86, 0.12, 0.14, 0.88) were obtained. These
values are compared against a winduw length 4 (a1 = 4) SNN performance set of (0.84, 0.19, 0.16,
0.81) and, therefore, a BPFNN performance enhancement of up to 70% over the individual sensor
nets was demonstrated. The results in Section 3, in which neural net fusion is applied to the FF
launches, also support this conclusion.
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3. FIREFLY SENSOR FUSION EXPERIMENT

This section applies the distributed sensor fusion architecture described in Section 2 to a
three-sensor fusion of measurements during the recent FF launch. The experiment, involving the
complicated logistics of three-radar imaging and tracking, provided a rare opportunity to demon-
strate the power of neural net sensor fusion.

3.1 Firefly Experiment

The FF experiment consisted of two rocket launches (FFI on 29 March and FFI on 20 October
1990) from Wallops Island into the Atlantic Ocean about 400 km eastward. During the flight the
deployment of an inflatable balloon was observed simultaneously by the thre.e Millstope Hill radars
at a range of approximately 750 km from the targets. The active sensors were the Hlaystack X-band
(A = 3 cm) and Firepond CO 2 laser (A = 11. 2 1L) imaging radars, and the Millstone L-band (A
23.1 cm) tracking radar.

About 6 min after the launch, a metallic canister (cross section "- 1 in2 ) was deployed from
a much larger metallic payload. As the payload fell away from the track, the canister ejected four
metallic doors and an inflating carbon cloth cone (cross section : 2 m2 ). As shown in Figure 3,
the predeployment, deployment, and postdeployment phas;es are clearly identified for both canister
and balloon-canister payloads.

The input data for the sensor fusion system consisted of range-Doppler images from the
Haystack and Firepond radars and a passive-IR spectral simulation of the objects in the images.
Radar imaging takes advantage of a moving target's aspect angle change to obtain a signal Doppler
shift proportional to the scatterer cross-range extent. The Doppler resolution is proportional to
the inverse of the signal integration time over which it is assumed that the scatterer has moved a
negligible distance and the signal is coherent. Through object motion analysis, the Doppler shift is
scaled to a physical cross-range distance [32,33]. This analysis is coupled with an estimate of the
range from the signal delay to obtain a 2D range-cross-range image of the object. The range-Doppler
technique results in image resolution greater than the limits imposed from the radar aperture and
radiation wavelength. Details of range-Doppler imaging theory for the Haystack and Firepond
radars is given in Ausherman et al. [34] and Kachelmyer [35], respectively. The third sensor input to
the sensor fusion system was from a passive-IR simulation of the objects in the images. The Lincoln
Laboratory-developed simulator was used to provide a feasibility study for passive-IR deployment
detection [36]. Inputs to the simulator included object shape, dimensions, spin/precession rates, and
orientati')n relative to the sun. The input thermal properties were initial temperature, emissivity,
interior etniisivity, absorptance, thermal riass (density x heat capacity), and specularity. Finally,
a climate and cloud cover-dependent model of earth spectral irradiation through tl:e atmosphere
was input. The output from the simulator consisted of the object spectral irradiation,, into the solid
angle over the range [5 ti, 25 p] in Watts/steradians. The spectral irradiation provided information
about the material composition of an object. In the range [5 A, 25 /i], this information is indirect
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through estimates of relative emissivity and reflectance at the surface. Thus, for example, a metallic
object with low emissivity and absorbtance (f _• k = 0) has a spectrum dominated by reflected
earthsnine. As seen in Figure 12, the metallic spectrum has notches at the ozone (: 9.5pj) and CO 2

I -I Il I I i' - I I I

0.12

V, 0.10

Q 0.08
2

0.06

:1i ~0.04
a.

0.02

.[ I I I I l I _ I I

6 8 10 12 14 16 18 20 22 24

WAVELENGTH (pm)

Figu•re 12. Passive-JR simulated spectrum over the range [5 A, 25 P] in W/sr. Metallic
object with 1-m2 cross section. e = a = 0.

(a 13 p) wavelengths due to atmospheric absorption of earthshipe as contrasted with a graybody
object (- E 0.75) in Figure 13, in which a classic blackbody spectrum dominates the spectral
irradiance. Note from the spectra in Figures 12 and 13 that the graybody irradiance is about 20
tires the reflected component for a 1-m2 object, suggesting that the existence of a graybody object
armong a set of metallic targets. will dominate the total spectral irradiance. The balloon-canister
deployment sequence for the FFI launch, with the identification of the predeployment, deployment,
and postdeployment phases, is shown in Figure 14. Figure 15 illustrates the passive-IR simulation

from each phase: a reflective earthshine canister spectrum for predeployment, the superposition of
metallic door and carbon cloth (graybody) spectrum for deployment, and a graybody carbon cloth
spectrum for postdeployment. These simulated spectra form the training set for the passive-IR

SNN in the sensor fusion architecture discussed in Section 3.2.

Figure 16 depicts the formulation of the fused sensor decision on balloon d~ployment from

I18



1759M-7

V 3.0 -

0 2.5 -Z
0 2.0

1.5
UJ
U)

1.0

I I ., L I I 1 I I . I

6 8 10 12 14 16 18 20 22 24

WAVELENGTH (rm)

Figure 13. Passive-IR simulated spectrum over the range [5 p, 25 p] in W/sr. Graybody
object with 1-rn2 cross section, c = 0.75, a = 0.9.

Haystack and Firepond range-Doppler images and a passive-IR simulation. Due to the longer
Haystack coherent integration time, the range and cross-range resolutions of the Firepond and
Haystack radar were comparable. The most important differences between the radar images resulted
from a Haystack beamwidth about 100 times that of the Firepond, which at 7.5 m at 750 km was
sufficient to observe only single targets in a complex scene, whereas the Haystack radar observed
a much larger cross-range extent. It should be emphasized that these Firepond properties are

beneficial; that is, a shorter integration time allows more rapid image generation (-- 3000 times
faster) and a narrow beam is more difficult to detect.

As seen in Figure 16, during the predeployment phase (of about 24 s) Firepond images con-
sisted of only the metallic canister, whereas hayvstack imagescontained returns from the Escparating

payload. The passive-IR spectrum was weak (-' 0.6 W/sr peak) and earthsh;ne-dominated with
notches at 9.5 and 13 ;i. During the 2-s deployment phase the cross-range velocity component of
the ejected doors resulted in a rapid 105'; of images for Firepond. Two of the doors moved roughly in
parallel to the inflating balloon so that throughout the deployment the Haystack images consisted
of the decoy and nearby doors represented in Figure 16. Note from Figure 15 that in the passive-IR

deployment spectra the balloon graybody radiation dominated the structure in the earthshine spec-
trum from the doors. The postdeployment phase of 30 s was determined from the Firepond images
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Figure 14. Balloon-canister deployment sequence for FF' launch: predeployment, de-
*• ployment, and postdeployment phases.

of an inflated carbon cloth cone, Haystack images of the balloon and two sufficiently separated
metallic doors, and a passive-IR carbon cloth graybody spectrum. The data represented in Figure

16 were input to the sensor fusion system described in Section 2 for a decision of predeployment,
deployment, and postdeployment phases. The irreducible ambiguities inherent in the single sensor

data are also observed in Figure 16. The passive-IR sensor discrimination between deployment
and postdeployment was weak due to the graybody domination of the reflected earthshine spectra.
The Firepond sensor was ambiguous between pre- and postdeployment phases due to the similarity

of the canister and balloon range-Doppler images. The shape difference between the cylindrical
canister and the cone-shaped balloon is a weak feature in noise-corrupted data. Further image
processing, such as intensity averaging and smoothing, may enhance the radar image-based deci-
sions [37]; however, in the sensor fusion e: )eriment preprocessing was limited to single intensity
threshold and centroid operations. The Haystack image set was overall the least ambiguous due

to the generation of complex scenes. During deployment the radar often lost reflections from the
doors and became ambiguous between predeployment and deployment decisions.

3.2 Firefly Sensor Fusion System

Figure 17 shows the distributed sensor fusion system used to analyze the Firefly balloon
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Fioure 16. Formulation of multisensor data fusion for balloon-canister deployment:
Haystack and Firepond range-Doppler images and passive-IR simulation of predeploy-
ment, deployment, and postdeployment phases.
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Figure 17. Distributed sensor fusion system for FF1 balloon-canister deployment de-
tection: Back propagation SNNs for passive-IR, Haystack, and Firepond sensors and
BPFNN.
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deployment from Haystack and Firepond range-Doppler images and the passive-IR simulation.
Three back propagation SNNs were trained to output a deployment decision based only on the
individual sensor data. The three output neurons, corresponding to predeployment, deployment,
and postdeployment on each SNN, output an analog value in the range [0,11. The BPFNN took
the normalized SNN outputs as input and mapped to an overall decision based on the three neuron
SNN outputs for each of the three deployment phases. The SNN and FNN output targets were
(1,0,0) for predeployment, (0,1,0) for deployment, and (0,0,1) for postdeploywrum. The architecture
in Figure 17 implies that the FNN was trained to perform a cluster analysis in che 9D space of SNN
outputs. The FNN inputs were clustered around ((1,0,0),(1,0,0),(1,,0)), ((0,1,0),(0,1,0),(0,1,0)),
and ((0,0,1),(0,0,1),(0,0,1)) for predeployment, deployment, and postdeployment, respectively. The
SNNs for Haystack and Firepond had a 20- x 200-pixel input plane, a 4- x 4-neuron middle layer,
and a third output layer with 3 neurons. The passive-IR SNN and the FNN had 16 neurons in the
middle layer, 3 neuron outpats, and input layers of 20 and 9 neurons, respectively. The radar SNN
structure was determined in part by the computational complexity of the fully interconnected 2D
back propagation net and by the minimum number of neurons required for convergence over the
training set of images. The ID nets (one SNN and the FNN) were not complexity-bound so that
the number of hidden neurons was determined by convergence issues discussed in Section 2.2.

The Haystack and Firepond SNNs were trained on 3 to 4 images each from predeployment,
deployment, and postdeployment. For each image pair the aggregate passive-IR spectrum was
computed based on the objects in the Haystack images. Training each radar SNN on a training
set of about 12 images using the back propagation learning algorithm required about 30 min on
a Silicon Graphics Workstation. Upon completing SNN training, a set of about 20 images and
passive-IR spectra each from the three deployment phases were propagated through the SNNs.
The normalized SNN outputs formed a trainiilg set for the FNN. It should be emphasized that the
training set for the FNN must reflect the uncertainty in decisions from each sensor alone. This
was accomplished by using an FNN training set distinct from the SNN training data, for which the
performance of each SNN is well-represented. Thus, for example, because the Firepond pre- and
postdeployment images were inherently ambiguous, the FNN training set contained Firepond SNN
outputs with about 40% error in pre- and postdeployment detection. This procedure was necessary
for the FNN to learn the extent that a sensor should be ignored for a given pattern of SNN outputs.
Figure 18 plots the FNN cost function C versus iteration during training. The 1D FNN converged
after about 90 iterations on a training set with about 60 input nine-vectors. The algorithm ran in
approximately 20 s on the Silicon Graphics Workstation.

To test the trained sensor fusion system, a performance set was created that contained between
10 and M0 radar image pairs each from predeployment, deployment, and postdeployment of novel
data from the same launch. A simulated passive-IR spectrum was generated for each Haystack
image with added random Gaussian noise of deviation 10% of the peak spectral value. The images
and spectra were stacked sequentially in time and propagated through the sensor fusion system.
Figure 19 shows the neuron outputs of the SNNs over the performance set. Note that for the
passive-IR SNN the deployment and postdeployment neurons oscillated in value, reflecting the
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Figure 19. SNN neuron outputs: Novel FF1 balloon-.canister deployment data for (a)
predeployr ient, (b) deployment, and (e) postdepioyment neurons.

ambiguity due to the domination of the reflective door spectrum by the graybody balloon. The
Firepond SNN neurons oscillated during the pre- and postdeployment phases due to the similarity
of the canister and balloon range-Doppler images. Finally, although the Haystack radar SNN had
the best performance overall, there was oscillation during the deployment phase due to the loss of
reflections from the ejected doors. Figure 20 depicts the FNN neuron outputs for the performance
set, which clearly indi .ates a performance superior to any of the SNNs. This is the desired evidence
of sensor synergism e,)tained through the fusion of multisensor data.

A procedure similar to the training and performance tests described above was applied to
the canister-payload deployment, in Figure 3. In this case the training set was generated from
the FF1 launch, and the system performance was tested on data from the FFII launch. Details
of the analysis will not be described, except to note that the passive-IR spectrum was dominated
by the large metallic payload (3 W/st peak) in the predeployment and deployment ph& ,'s. The
r'adar images contained only the payload during predeployment, the canister and payload during
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Figure 20. FNN neuron outputs: Novel FFI balloon-canister deployment data for (a)
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deployment, and the canister alone during postdeployment. The radar SNNs, therefore, detected
the deployment phases based on image segmentation and payload-canister size differences. The
three neuron output values for each of the SNNs from a performance set of about 60 FF1I images
of the canister deployment is shown in Figure 21. The Firepond SNN performance was poor due to
the lack of correct scaling for FFI1 and a high clutter level in the data. The difficulties in launch-
to-launch cross-range scaling resulted from different object spin rates between FF1 and FFI1. For
the most part, the problem can be corrected by further postlaunch image processing. Figure 22
illustrates the thiee FNN neuron outputs 1-for th•, perfo-rm'nCe set of FF11 data. As with the balloon

deployment results in Figures 19 and 20, there is clear evidence of sensor synergism from the distinct
FNN neuron outputs during the different phases.
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4. CONCLUSION

This report describes the theoretical and experimental analysis of neural networks in a dis-
tributed sensor fusion decision-making environment. The architecture consists of sensor-level de-
cision nodes, which output a decision based on data from a particular sensor. The multisensor
decision outputs form the input to a fusion decision node for an overall decision. The fusion node
performs cluster analysis in the multisensor decision hypothesis space to obtain the system decision.

The theoretical analysis consisted of the application of neural nets to a benchmark problem,
the detection of variance transitions in Gaussian noise, for which a classical hypothesis test is de-
fined. In both the cases of stand-alone single sensor decision making and multisensor fusion, the
neural nets matched the performance at the classical optimum. In general, the optimum fusion pro-
cessor, which is obtained from a log-likelihood test in Chair and Varshney [3], is a perceptron neural
net. This fact motivated the use of an adaptive network at the fusion processor in the distributed
!,-nsor fusion architecture. It was shown that a back propagation net matched the performance of
the optimum fusion processor on the variance transition detection (SXOR) test. The procedure of
net training in the distributed sensor architecture, which requires separate representative training
sets for the sensor and fus:on nodes, was reviewed in its application to the SXOR test.

The experimental analysis of neural net sensor fusion consisted of applying the system to
object deployment detection during the Firefly launch. The sensor inputs consisted of range-
Doppler images from the Haystack (X..band) and Firepond (CO 2 laser) radars, as well as a passive-
IR spectral simulation of the tracked objects. The output decisions were the identification of
predeployment, deployinent, and postdeployment phases for the release of an inflatable carbon
cloth balloon. The fusion neural net performed a 9D clus, er analysis (three sensors with three
decisions) on the output of independently trained sensor neural nets. The system was trained and
performance-tested on data from the first Firefly launch for the detection of balloon deployment.
In a more recent experiment the system was applied to the detection of canister deployment using
training and performance data from the first and second Firefly launches, respectively. The results
clearly demonstrate enhanced fusion performance from the comparison of deployment detection by
the fusion and sensor nets. Through the analysis of sensor ambiguities, it was shown that the fusion
system employs synergism between the various sensors to provide an optimum overall decision.

Distributed sensor fusion processing is a highly relevant procedure for data-based decision
making. The architecture in Figure 1 has built-in robustness against communication failure by
allowing decision making at each sensor processor. The system is also robust against single sensor

failure through the fusion of multiple sensor decisions. This report demonstrates that the appli-
cation of neural nets in tho architecture takes full advantage of performance enhancements made
possible by data fusion.
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APPENDIX A
VARIANCE TRANSITION DETECTION

Equations (3) and (4) are derived to relate detection and false alarm probabilities to the
Iquantities {p(j 1m)1j, mf{0, 1}}. Recall that the indexes zero and one correspond to noise deviations

oa( and a,, respectively. The pair (i, j) denotes a transition from deviation ai to deviation aj, and the

Ii express'rn p(xly) denotes the probability of x detection conditioned on y. The relevant probabilities
are then given by Pd = p(transitionItransition) and P1 = p(transition~no transition) for detection
and false alarm. The detection probability is given by

p(transition transition) = p((1, 0)ltransition) + p((O, 1)ltransition). (A.1)

The application of Bayes theornm to Equation (11) yields the result

Pd = p((1, 0), transition) + p((0, 1), transition) (A.2)
p(transition)

where p(transition) rdpresents the prior probability of a transition, which is obtained either by a
(1,0) or a (0,1) noise deviation pair. Equation (12) can be written in terms of the probability for
specific deviation pair detection with the result

p((O, 1), (1, 0)) + p((O, 1), (0, 1)) + p((1, 0), (1, 0)) + p((l, 0), (0, 1))
p((1, 0)) + p((O, 1)) (A.3)

where p((i, j)) represents the prior probability of a deviation pair (i, j). Application of Bayes
theorem to Equation (13) results in the expression

Pd [p((0,1)l(1,0)) +p((1,0)(1,0))]p((1,G)) +
p((, 0)) + p((O, 1))

[p((0, 1)(0, 1)) + p((', 0 )I(0 , 1))]p((O, 1)) (A.4)
p((, 0)) + p((0, 1))

Recall that p((i, j)I(k, m)) represents the detection of deviation pair (i, j) conditioned on the pair

(k, m). Assuming that the decision for this occurrence is based on a pair of maximum likelihood

tests before and after the transition, the conditional probabilities factorize, that is, p((i, j)I(k, mn)) =

p(ijk)p(jjin). Application of this property in Equation (14) results in the expression

Pd p(lil)p(010) + p(0!l)p(l10), (A.5)
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where p(ilj) is given in Equations (5) and (6). It is interesting that the prior probabilities p((i, j))
have cancelled from Equation (15), indicating an overall detection probability independent of the
prior distribution of deviation pairs.

The same argument applied to the false alarm probability results in Lhe expression

P = P(I1)p(OI1)p(((, 1)) + p(lIO)p(OO)p((O, 0)) (A.6)
Pf - [pý((O, 0)) + p((1, 1))] /2(A)

In this case the probability depends on the prior probabilities p((0, 0)) and p((1, 1)) for the ensemble
upon which the hypothesis test is applied. An ensemble in which all deviation pairs (i,j) are equally
likely results in

Pf =p('I1)p(O11) +p(0I0)p('IO). (A.7)
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